

Sep 24-10:09 AM

2-3 Connuity

Learning Targets

- I can idenfy when/where a funcon is disconnuous.
- I can classify disconnuies.
- I can write an extended funcon that removes a removable disconnuity.
- I understand how the Intermediate Value Theorem applies to connuous funcons.

Sep 12-10:35 AM

Sep 12-10:35 AM

Connuity at a Point

Interior points: A funcon y = f(x) is connuous at an interior point c if

$$\lim_{x \to c} f(x) = f(c)$$

Endpoints: A funcon y=f(x) is connuous at an

endpoint if

<u>le endpoint</u> <u>right endpoint</u>

$$\lim_{x \to c^{+}} f(x) = f(c) \qquad \lim_{x \to c^{-}} f(x) = f(c)$$

Sep 12-10:35 AM

Sep 12-10:35 AM

Sep 12-10:35 AM

Types of Disconnuity (cont'd)

3. Infinite Disconnuity

4. Oscillang Disconnuity $y = \sin(\frac{1}{x})$

Sep 12-10:35 AM

Sep 12-10:35 AM

Sep 12-10:35 AM

Properes of Connuous Funcons

If funcons f and g are connuous at x=c, then the following combinaons are connuous at x=c.

• Sums: f+g

• Differences: f-g

• Products: $f \cdot g$

• Constant Mulples: $k \cdot f$ (if k is constant)

• Quoents: $\frac{f}{g}$ (if g(c) does not equal 0)

• Composites: $f \circ g$ and $g \circ f$

Sep 8-12:41 PM

Sep 12-10:35 AM

Intermediate Value Theorem for Connuous Funcons A funcon y=f(x) that is connuous on a closed interval [a,b] takes on every value between f(a) and f(b).

Sep 12-10:35 AM

Homework:

p. 84 #1-4, 10-18, 21-25, 41-44

Learning Targets

- I can idenfy when/where a funcon is disconnuous.
- I can classify disconnuies.
- I can write an extended funcon that removes a removable disconnuity.
- I understand how the Intermediate Value Theorem applies to connuous funcons.

Sep 12-10:35 AM